ON SOME RESULTS OF I_2-CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS

ERDİNÇ DÜNDAR

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract. In this work, we investigate some results of I_2-convergence of double sequences of real valued functions and prove a decomposition theorem.

1. BACKGROUND AND INTRODUCTION

The concept of convergence of a real sequence was independently extended to statistical convergence by Fast [11] and Schoenberg [30]. This concept was extended to the double sequences by Mursaleen and Edely [21]. A lot of developments have been made in this area after the works of Šalát [29] and Fridy [13, 14]. Furthermore Gökhan et al. [16] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [11, 13, 14, 28]. Çakan and Altay [5] presented multidimensional analogues of the results presented by Fridy and Orhan [12].

The idea of I-convergence was introduced by Kostyrko et al. [18] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of the set of natural numbers. Nuray and Ruckle [26] independently introduced the same concept with another name generalized statistical convergence. Kostyrko et al. [19] gave some of basic properties of I-convergence and dealt with extremal I-limit points. Das et al. [6] introduced the concept of I-convergence of double sequences in a metric space and studied some of its properties. Also Das and Malik [7] introduced the concept of I-limit points, I-cluster points and I-limit superior and I-limit inferior of double sequences. Balcerzak et al. [4] discussed various kinds of statistical convergence and I-convergence of sequences of functions with values in \mathbb{R} or in a metric space. Gezer and Karakus [15] investigated I-pointwise and uniform convergence and I^*-pointwise and uniform convergence of function sequences and then they examined the relation between them. Dündar and Altay [8] studied the
ON SOME RESULTS OF I_2-CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS

concepts of I_2-Cauchy and I_2^*-Cauchy for double sequences in a linear metric space and investigated the relation between I_2-convergence and I_2^*-convergence of double sequences of functions defined between linear metric spaces. Also, some results on I-convergence may be found in [2, 3, 9, 20, 22, 23, 24, 25, 31].

In this study, we investigate some results of I_2-convergence of double sequences of real valued functions and prove a decomposition theorem for I_2-convergent double sequences.

2. DEFINITIONS AND NOTATIONS

Throughout the paper, \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively.

Now, we recall the concept of statistical and ideal convergence of the sequences (See [6, 8, 10, 11, 16, 18, 21, 27]).

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ if for any $\varepsilon > 0$, there exists $N_\varepsilon \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$, whenever $m, n > N_\varepsilon$. In this case we write

$$\lim_{m,n \to \infty} x_{mn} = L.$$

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let K_{mn} be the number of $(j,k) \in K$ such that $j \leq m$, $k \leq n$. If the sequence $\{K_{mn}\}$ has a limit in Pringsheim’s sense then we say that K has double natural density and is denoted by

$$d_2(K) = \lim_{m,n \to \infty} \frac{K_{mn}}{m.n}.$$

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$, if for any $\varepsilon > 0$ we have $d_2(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \geq \varepsilon\}$.

A double sequence of functions $\{f_{mn}\}$ is said to be pointwise convergent to f on a set $S \subset \mathbb{R}$, if for each point $x \in S$ and for each $\varepsilon > 0$, there exists a positive integer $N(x,\varepsilon)$ such that

$$|f_{mn}(x) - f(x)| < \varepsilon,$$

for all $m,n > N$. In this case we write

$$\lim_{m,n \to \infty} f_{mn}(x) = f(x) \text{ or } f_{mn} \to f, \text{ as } m,n \to \infty,$$

for each $x \in S$.

A double sequence of functions $\{f_{ij}\}$ is said to be pointwise statistically convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon > 0$,

$$\lim_{m,n \to \infty} \frac{1}{mn} |\{(i,j), i \leq m \text{ and } j \leq n : |f_{ij}(x) - f(x)| \geq \varepsilon\}| = 0,$$

for each (fixed) $x \in S$, i.e., for each (fixed) $x \in S$,

$$|f_{ij}(x) - f(x)| < \varepsilon, \text{ a.a.}(i,j).$$

In this case we write

$$st - \lim_{i,j \to \infty} f_{ij}(x) = f(x) \text{ or } f_{ij} \overset{st}{\to} f,$$

for each $x \in S$.

Let $X \neq \emptyset$. A class I of subsets of X is said to be an ideal in X provided:
Lemma 2.1. [18] If \mathcal{I} is a nontrivial ideal in X, $X \neq \emptyset$, then the class
\[\mathcal{F}(\mathcal{I}) = \{ M \subset X : (\exists A \in \mathcal{I})(M = X\setminus A) \} \]
is a filter on X, called the filter associated with \mathcal{I}.

A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Throughout the paper we take \mathcal{I}_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is also admissible.

Let $\mathcal{I}_2^0 = \{ A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N})(i, j \geq m(A) \Rightarrow (i, j) \notin A) \}$. Then \mathcal{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal.

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of elements of X is said to be \mathcal{I}_2-convergent to $L \in X$, if for any $\varepsilon > 0$ we have
\[A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \geq \varepsilon\} \in \mathcal{I}_2. \]

In this case we say that x is \mathcal{I}_2-convergent and we write
\[\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L. \]

If \mathcal{I}_2 is a strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$, then usual convergence implies \mathcal{I}_2-convergence.

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal.

A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2^*-convergent to $L \in X$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that
\[\lim_{m,n \to \infty} x_{mn} = L, \]

for $(m, n) \in M$ and we write
\[\mathcal{I}_2^* - \lim_{m,n \to \infty} x_{mn} = L. \]

Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence of functions $\{f_{mn}\}$ is said to be \mathcal{I}_2-convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon > 0$
\[\{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \geq \varepsilon\} \in \mathcal{I}_2, \]

for each (fixed) $x \in S$. This can be written by the formula
\[(\forall x \in S) \ (\forall \varepsilon > 0) \ (\exists H \in \mathcal{I}_2) \ (\forall (m, n) \notin H) \ |f_{mn}(x) - f(x)| < \varepsilon. \]

This is written as
\[f_{mn} \mathcal{I}_2 \to f, \text{ as } m, n \to \infty. \]

The function f is called the double \mathcal{I}_2-limit (or Pringsheim \mathcal{I}_2-limit) function of the $\{f_{mn}\}$.
ON SOME RESULTS OF \mathcal{I}_2-CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS

A double sequence of functions $\{f_{mn}\}$ is said to be pointwise \mathcal{I}_2^*-convergent to f on $S \subset \mathbb{R}$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e. $\mathbb{N} \times \mathbb{N}\setminus M \in \mathcal{I}_2$) such that

$$\lim_{m,n \to \infty} f_{mn}(x) = f(x),$$

for $(m,n) \in M$ and we write

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \text{ or } f_{mn} \xrightarrow{\mathcal{I}_2^*} f, \text{ as } m,n \to \infty,$$

for each $x \in S$.

We say that an admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property $(AP2)$, if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to \mathcal{I}_2, there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \Delta B_j \in \mathcal{I}_2$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

Now we begin with quoting the lemmas due to Dndar and Altay [8, 10] which are needed throughout the paper.

Lemma 2.2 ([10]). Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $\{f_{mn}\}$ is a double sequence of functions and f be a function on $S \subset \mathbb{R}$. Then

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \text{ implies } \mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x),$$

for each $x \in S$.

Lemma 2.3 ([8]). Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property $(AP2)$, (X,d_x) and (Y,d_y) two linear metric spaces, $f_{mn} : X \to Y$ a double sequence of functions and $f : X \to Y$. If $\{f_{mn}\}$ double sequence of functions is \mathcal{I}_2-convergent, then it is \mathcal{I}_2^*-convergent.

3. SOME RESULTS OF \mathcal{I}_2-CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS

Throughout the paper we use convergence instead of pointwise convergence.

Theorem 3.1. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $\{f_{mn}\}$ be a double sequence of functions and f be a function on $S \subset \mathbb{R}$. If $c \in \mathbb{R}$ and $\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x)$, then we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} cf_{mn}(x) = cf(x),$$

for each $x \in S$.

Proof. Let $c \in \mathbb{R}$ and $\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x)$, for each $x \in S$. If $c = 0$, there is nothing to prove, so we assume that $c \neq 0$.

Let $\varepsilon > 0$ be given. Then,

$$\left\{(m,n) \in \mathbb{N} \times \mathbb{N} : |cf_{mn}(x) - cf(x)| \geq \varepsilon\right\} \subseteq \left\{(m,n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \geq \frac{\varepsilon}{|c|}\right\} \in \mathcal{I}_2.$$

Hence, $\mathcal{I}_2 - \lim_{m,n \to \infty} cf_{mn}(x) = cf(x)$ for each $x \in S$. \qed
Theorem 3.2. Let \(\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}} \) be a strongly admissible ideal, \(\{f_{mn}\} \) and \(\{g_{mn}\} \) be two double sequences of functions, \(f \) and \(g \) be two functions on \(S \subset \mathbb{R} \) and

\[
\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \text{ and } \mathcal{I}_2 - \lim_{m,n \to \infty} g_{mn}(x) = g(x),
\]

for each \(x \in S \). Then, we have

(i) \(\mathcal{I}_2 - \lim_{m,n \to \infty} (f_{mn} + g_{mn})(x) = f(x) + g(x) \),

(ii) \(\mathcal{I}_2 - \lim_{m,n \to \infty} (f_{mn}g_{mn})(x) = f(x)g(x) \),

for each \(x \in S \).

Proof. (i) Let \(\varepsilon > 0 \) be given. Since

\[
\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \text{ and } \mathcal{I}_2 - \lim_{m,n \to \infty} g_{mn}(x) = g(x),
\]

therefore

\[
A\left(\frac{\varepsilon}{2}\right) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \geq \frac{\varepsilon}{2}\} \in \mathcal{I}_2
\]

and

\[
B\left(\frac{\varepsilon}{2}\right) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |g_{mn}(x) - g(x)| \geq \frac{\varepsilon}{2}\} \in \mathcal{I}_2,
\]

for each \(x \in S \) and by definition of ideal we have \(A\left(\frac{\varepsilon}{2}\right) \cup B\left(\frac{\varepsilon}{2}\right) \in \mathcal{I}_2 \). Now define the set

\[
C(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |(f_{mn}(x) + g_{mn}(x)) - (f(x) + g(x))| \geq \varepsilon\}
\]

and it is sufficient to prove that \(C(\varepsilon) \subset A\left(\frac{\varepsilon}{2}\right) \cup B\left(\frac{\varepsilon}{2}\right) \), for each \(x \in S \). Let \((m, n) \in C(\varepsilon) \), then we have

\[
\varepsilon \leq |(f_{mn}(x) + g_{mn}(x)) - (f(x) + g(x))| \\
\leq |f_{mn}(x) - f(x)| + |g_{mn}(x) - g(x)|,
\]

for each \(x \in S \). As both of \(|f_{mn}(x) - f(x)|, |g_{mn}(x) - g(x)| \) can not be (together) strictly less than \(\frac{\varepsilon}{2} \), and therefore we have either

\[
|f_{mn}(x) - f(x)| \geq \frac{\varepsilon}{2} \text{ or } |g_{mn}(x) - g(x)| \geq \frac{\varepsilon}{2},
\]

for each \(x \in S \). This shows that

\[
(m,n) \in A\left(\frac{\varepsilon}{2}\right) \text{ or } (m,n) \in B\left(\frac{\varepsilon}{2}\right)
\]

and so we have

\[
(m,n) \in A\left(\frac{\varepsilon}{2}\right) \cup B\left(\frac{\varepsilon}{2}\right).
\]

Hence, \(C(\varepsilon) \subset A\left(\frac{\varepsilon}{2}\right) \cup B\left(\frac{\varepsilon}{2}\right) \).

(ii) Since \(\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \), therefore for \(\varepsilon = 1 > 0 \)

\[
\{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \geq 1\} \in \mathcal{I}_2
\]

for each \(x \in S \) and so

\[
A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| < 1\} \in \mathcal{F}(\mathcal{I}_2)
\]

for each \(x \in S \). Also for any \((m, n) \in A \)

\[
|f_{mn}(x)| < 1 + f(x),
\]

for each \(x \in S \). Let \(\varepsilon > 0 \) be given. Choose \(\delta > 0 \) such that

\[
0 < 2\delta < \frac{\varepsilon}{|f| + |g| + 1}.
\]
It follows from the assumption that
\[B = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| < \delta \} \in \mathcal{F}(I_2) \]
and
\[C = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : |g_{mn}(x) - g(x)| < \delta \} \in \mathcal{F}(I_2), \]
for each \(x \in S \). Since \(\mathcal{F}(I_2) \) is a filter, therefore \(A \cap B \cap C \in \mathcal{F}(I_2) \). Then for each \((m, n) \in A \cap B \cap C\) we have
\[|f_{mn}(x)g_{mn}(x) - f(x)g(x)| = |f_{mn}(x)g_{mn}(x) - f_{mn}(x)g(x) + f_{mn}(x)g(x) - f(x)g(x)| \]
\[\leq |f_{mn}(x)||g_{mn}(x) - g(x)| + |g(x)||f_{mn}(x) - f(x)| \]
\[< (|f(x)| + 1)\delta + |g(x)|\delta = (|f(x)| + |g(x)| + 1)\delta < \varepsilon, \]
for each \(x \in S \). Hence we have
\[\{ (m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x)g_{mn}(x) - f(x)g(x)| \geq \varepsilon \} \in I_2, \]
for each \(x \in S \). This completes the proof of theorem. \(\square \)

Now, we give the decomposition theorem for double sequences of functions.

Theorem 3.3. Let \(I_2 \subset 2^{\mathbb{N} \times \mathbb{N}} \) be a strongly admissible ideal having the property (AP2), \(\{ f_{mn} \} \) be a double sequence of functions and \(f \) be a function on \(S \subset \mathbb{R} \). Then the following conditions are equivalent:

(i) \(I_2 = \lim_{m,n \to \infty} f_{mn}(x) = f(x) \), for each \(x \in S \).

(ii) There exist \(\{ g_{mn} \} \) and \(\{ h_{mn} \} \) be two double sequences of functions such that
\[f_{mn}(x) = g_{mn}(x) + h_{mn}(x), \quad \lim_{m,n \to \infty} g_{mn}(x) = f(x) \quad \text{and} \quad \supp h_{mn}(x) \in I_2, \]
for each \(x \in S \), where \(\supp h_{mn}(x) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) \neq 0 \} \).

Proof. (i) \(\Rightarrow \) (ii): \(I_2 = \lim_{m,n \to \infty} f_{mn}(x) = f(x) \) for each \(x \in S \). Then by Lemma 2.3 there exists a set \(M \in \mathcal{F}(I_2) \) (i.e., \(H = \mathbb{N} \times \mathbb{N} \backslash M \in I_2 \)) such that
\[\lim_{(m,n)\in M} f_{mn}(x) = f(x), \]
for each \(x \in S \). Let us define the double sequence \(\{ g_{mn} \} \) by
\[g_{mn}(x) = \begin{cases} f_{mn}(x), & (m,n) \in M \\ f(x), & (m,n) \in \mathbb{N} \times \mathbb{N} \backslash M. \end{cases} \] (3.1)
It is clear that \(\{ g_{mn} \} \) is a double sequence of functions on \(S \) and
\[\lim_{m,n \to \infty} g_{mn}(x) = f(x), \]
for each \(x \in S \). Also let
\[h_{mn}(x) = f_{mn}(x) - g_{mn}(x), \quad m,n \in \mathbb{N}, \]
for each \(x \in S \). Since
\[\{ (m, n) \in \mathbb{N} \times \mathbb{N} : f_{mn}(x) \neq g_{mn}(x) \} \subset \mathbb{N} \times \mathbb{N} \backslash M \in I_2, \]
for each \(x \in S \), so we have
\[\{ (m, n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) \neq 0 \} \in I_2. \]
It follows that \(\supp h_{mn}(x) \in I_2 \) and by (3.1) and (3.2) we get \(f_{mn}(x) = g_{mn}(x) + h_{mn}(x) \), for each \(x \in S \).
(ii) \Rightarrow (i): Suppose that there exist two sequences $\{g_{mn}\}$ and $\{h_{mn}\}$ on S such that
\begin{equation}
 f_{mn}(x) = g_{mn}(x) + h_{mn}(x), \quad \lim_{m,n \to \infty} g_{mn}(x) = f(x), \quad \text{supp } h_{mn}(x) \in \mathcal{I}_2,
\end{equation}
for each $x \in S$, where $\text{supp } h_{mn}(x) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) \neq 0\}$. We will show that
\[\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x), \]
for each $x \in S$. Let
\[M = \{(m, n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) = 0\} = \mathbb{N} \times \mathbb{N} \setminus \text{supp } h_{mn}(x). \]
Since
\[\text{supp } h_{mn}(x) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) \neq 0\} \in \mathcal{I}_2, \]
from (3.3) and (3.4) we have $M \in F(\mathcal{I}_2)$, $f_{mn}(x) = g_{mn}(x)$ for $(m, n) \in M$ and
\[\mathcal{I}_2 - \lim_{(m,n) \in M} f_{mn}(x) = f(x), \]
for each $x \in S$. By Lemma 2.2 it follows that
\[\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x), \]
for each $x \in S$. This completes the proof. \hfill \Box

Corollary 3.1. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property $(AP2)$, $\{f_{mn}\}$ be a double sequence of functions and f be a function on $S \subset \mathbb{R}$. Then
\[\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x) \]
if and only if there exist two double sequences $\{g_{mn}\}$ and $\{h_{mn}\}$ of functions on S such that
\begin{equation}
 f_{mn}(x) = g_{mn}(x) + h_{mn}(x), \quad \lim_{m,n \to \infty} g_{mn}(x) = f(x), \quad \text{and } \mathcal{I}_2 - \lim_{m,n \to \infty} h_{mn}(x) = 0,
\end{equation}
for each $x \in S$.

Proof. Let $\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x)$ and $\{g_{mn}\}$ is the sequence defined by (3.1). Consider the sequence
\begin{equation}
 h_{mn}(x) = f_{mn}(x) - g_{mn}(x), \quad m, n \in \mathbb{N},
\end{equation}
for each $x \in S$. Then we have
\[\lim_{m,n \to \infty} g_{mn}(x) = f(x) \]
and since \mathcal{I}_2 is a strongly admissible ideal so
\[\mathcal{I}_2 - \lim_{m,n \to \infty} g_{mn}(x) = f(x), \]
for each $x \in S$. By Theorem 3.2 and by (3.5) we have
\[\mathcal{I}_2 - \lim_{m,n \to \infty} h_{mn}(x) = 0, \]
for each $x \in S$.

Now let $f_{mn}(x) = g_{mn}(x) + h_{mn}(x)$, where
\[\lim_{m,n \to \infty} g_{mn}(x) = f(x) \quad \text{and } \mathcal{I}_2 - \lim_{m,n \to \infty} h_{mn}(x) = 0,$
for each $x \in S$. Since \mathcal{I}_2 is a strongly admissible ideal so
\[
\mathcal{I}_2 - \lim_{m,n \to \infty} g_{mn}(x) = f(x)
\]
and by Theorem 3.2 we get
\[
\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x),
\]
for each $x \in S$.

Remark 3.1. In Theorem 3.3, if (ii) is satisfied then the strongly admissible ideal \mathcal{I}_2 need not have the property (AP_2). Since
\[
\{(m,n) \in \mathbb{N} \times \mathbb{N} : |h_{mn}(x)| \geq \varepsilon\} \subset \{(m,n) \in \mathbb{N} \times \mathbb{N} : h_{mn}(x) \neq 0\} \in \mathcal{I}_2
\]
for each $\varepsilon > 0$, then
\[
\mathcal{I}_2 - \lim_{m,n \to \infty} h_{mn}(x) = 0.
\]
Thus, we have
\[
\mathcal{I}_2 - \lim_{m,n \to \infty} f_{mn}(x) = f(x),
\]
for each $x \in S$.

Acknowledgements

The author would like to express his thanks to Professor Bilâl Altay, Faculty of Education, İnönü University, 44280-Malatya, TURKEY for his careful reading of an earlier version of this paper and the constructive comments which improved the presentation of the paper.

References

[9] E. Dündar, B. Altay, \mathcal{I}_2-convergence and \mathcal{I}_2-Cauchy of double sequences, (under communication).

